Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 352: 120043, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232590

RESUMEN

Rivers are ecosystems highly threatened by human activities and fish are an invaluable tool to measure and communicate environmental degradation and restoration. Fish bioassessment is crucial but notoriously difficult in Mediterranean-climate streams for a number of reasons, including low local species richness, faunas with high spatial turnover and generalist species, and scarcity of reference sites. In this study, we conducted the most comprehensive test of the pan-European fish index (EFI+) in the Iberian Peninsula, analysing its response to multiple anthropogenic pressures. We compiled a database, which we provide online, with 2970 electrofishing samples across Spain, involving 100,732 fish of 69 species. Principal component analyses of many quantitative variables were used to create new synthetic anthropogenic pressure indices. Correlation and multiple linear regression analyses were used to test the relationship between these pressures and the fish index (EFI+) and its four individual metrics scores (i.e., density of species intolerant to oxygen depletion, density of fish ≤150 mm of species intolerant to habitat degradation, richness of species of rheophilic reproduction habitat, and density of species of lithophilic reproduction habitat). We also obtained the same models but including the river basin district to test for spatial or methodological differences. Our results indicate that both the EFI+ index and its individual metrics respond to various anthropogenic pressures. These pressures explained about 36% of the variance of EFI+ values. Notably, downstream and mainstream reaches with higher agricultural or urban land uses, increased hydrologic alteration, and water and habitat quality impairment exhibited lower EFI+ values. Although less variance was explained for the individual metrics than for the fish index, they responded as expected to the different pressures. For instance, the richness of rheophilic species and the number of lithophilic fish decreased with hydrologic alteration, while the number of fish intolerant to oxygen depletion decreased with water quality impairment. Similar correlations were observed when river basin district was included in the model, but with higher explained variation and greater significance of the pressures. While it is possible to develop regional indices with more metrics and a stronger correlation with anthropogenic pressures, EFI+ is the only fish index that has been validated throughout the Spanish peninsular territory. Our results support the use of EFI+ in intercalibration exercises across Spain until better regional indices are developed.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Animales , Humanos , España , Monitoreo del Ambiente/métodos , Ríos , Peces , Oxígeno
2.
Science ; 379(6635): 946-951, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862780

RESUMEN

Ecosystem-based management is costly. Therefore, without rigorously showing that it can outperform traditional species-focused alternatives, its broad-scale adoption in conservation is unlikely. We present a large-scale replicated and controlled set of whole-lake experiments in fish conservation (20 lakes monitored over 6 years with more than 150,000 fish sampled) to examine the outcomes of ecosystem-based habitat enhancement (coarse woody habitat addition and shallow littoral zone creation) versus a widespread, species-focused alternative that has long dominated fisheries management practice (i.e., fish stocking). Adding coarse woody habitats alone did not, on average, enhance fish abundance, but creating shallow water habitat consistently did, especially for juvenile fish. Species-focused fish stocking completely failed. We provide strong evidence questioning the performance of species-focused conservation actions in aquatic ecosystems and instead recommend ecosystem-based management of key habitats.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Explotaciones Pesqueras , Peces , Lagos , Madera , Animales
3.
Conserv Biol ; 36(3): e13870, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34844282

RESUMEN

Globally, policies aiming for conservation of species, free-flowing rivers, and promotion of hydroelectricity as renewable energy and as a means to decarbonize energy systems generate trade-offs between protecting freshwater fauna and development of hydropower. Hydroelectric turbines put fish at risk of severe injury during passage. Therefore, comprehensive, reliable analyses of turbine-induced fish mortality are pivotal to support an informed debate on the sustainability of hydropower (i.e., how much a society is willing to pay in terms of costs incurred on rivers and their biota). We compiled and examined a comprehensive, global data set of turbine fish-mortality assessments involving >275,000 individual fish of 75 species to estimate mortality across turbine types and fish species. Average fish mortality from hydroelectric turbines was 22.3% (95% CI 17.5-26.7%) when accounting for common uncertainties related to empirical estimates (e.g., handling- or catch-related effects). Mortality estimates were highly variable among and within different turbine types, study methods, and taxa. Technical configurations of hydroelectric turbines that successfully reduce fish mortality and fish-protective hydropower operation as a global standard could balance the need for renewable energy with protection of fish biodiversity.


Mortalidad evidente, pero dependiente del contexto, de peces que pasan por turbinas hidroeléctricas Resumen Globalmente, las políticas que buscan la conservación de especies, el flujo libre de ríos y la promoción de la hidroeléctrica como una energía renovable y como un medio para reducir el carbono en sistemas de energía generan pros y contras entre la protección de la fauna de agua dulce y el desarrollo de la hidroeléctrica. Las turbinas hidroeléctricas ponen a los peces en riesgo de heridas severas al pasar por ellas. Por lo tanto, análisis integrales, confiables de la mortalidad de peces inducida por turbinas son esenciales para sustentar un debate informado de la sustentabilidad de la energía hidroeléctrica (i. e., que tan dispuesta esta una sociedad para pagar en términos de costos incurridos en los ríos y su biota). Compilamos y examinamos un conjunto de datos integrales, globales de evaluaciones de mortalidad de peces en turbinas involucrando >275,000 peces individuales de 75 especies para estimar la mortalidad en tipos de turbinas y especies de peces. La mortalidad promedio de peces en turbinas hidroeléctricas fue 22.3% (95% IC 17.5-26.7%) cuando se consideraron incertidumbres comunes relacionadas con las estimaciones empíricas (e. g., efectos relacionados con el manejo o captura). Las estimaciones de mortalidad fueron muy variables entre y dentro de los diferentes tipos de turbinas, métodos de estudio y taxones. Las configuraciones técnicas de las turbinas hidroeléctricas que exitosamente reduzcan la mortalidad de peces y proporcionen una operación protectora de peces como un estándar global podrían equilibrar la necesidad de energía renovable con la protección de la biodiversidad de peces.


Asunto(s)
Conservación de los Recursos Naturales , Centrales Eléctricas , Animales , Peces , Energía Renovable , Ríos
4.
Sci Rep ; 10(1): 18947, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144649

RESUMEN

Swimming performance is a key feature that mediates fitness and survival in aquatic animals. Dispersal, habitat selection, predator-prey interactions and reproduction are processes that depend on swimming capabilities. Testing the critical swimming speed (Ucrit) of fish is the most straightforward method to assess their prolonged swimming performance. We analysed the contribution of several predictor variables (total body length, experimental water temperature, time step interval between velocity increments, species identity, taxonomic affiliation, native status, body shape and form factor) in explaining the variation of Ucrit, using linear models and random forests. We compiled in total 204 studies testing Ucrit of 35 inland fishes of the Iberian Peninsula, including 17 alien species that are non-native to that region. We found that body length is largely the most important predictor of Ucrit out of the eight tested variables, followed by family, time step interval and species identity. By contrast, form factor, temperature, body shape and native status were less important. Results showed a generally positive relationship between Ucrit and total body length, but regression slopes varied markedly among families and species. By contrast, linear models did not show significant differences between native and alien species. In conclusion, the present study provides a first comprehensive database of Ucrit in Iberian freshwater fish, which can be thus of considerable interest for habitat management and restoration plans. The resulting data represents a sound foundation to assess fish responses to hydrological alteration (e.g. water flow tolerance and dispersal capacities), or to categorize their habitat preferences.


Asunto(s)
Peces/fisiología , Natación/fisiología , Animales , Ecosistema , Agua Dulce , Temperatura
5.
Glob Chang Biol ; 26(10): 5509-5523, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32785968

RESUMEN

Upstream range shifts of freshwater fishes have been documented in recent years due to ongoing climate change. River fragmentation by dams, presenting physical barriers, can limit the climatically induced spatial redistribution of fishes. Andean freshwater ecosystems in the Neotropical region are expected to be highly affected by these future disturbances. However, proper evaluations are still missing. Combining species distribution models and functional traits of Andean Amazon fishes, coupled with dam locations and climatic projections (2070s), we (a) evaluated the potential impacts of future climate on species ranges, (b) investigated the combined impact of river fragmentation and climate change and (c) tested the relationships between these impacts and species functional traits. Results show that climate change will induce range contraction for most of the Andean Amazon fish species, particularly those inhabiting highlands. Dams are not predicted to greatly limit future range shifts for most species (i.e., the Barrier effect). However, some of these barriers should prevent upstream shifts for a considerable number of species, reducing future potential diversity in some basins. River fragmentation is predicted to act jointly with climate change in promoting a considerable decrease in the probability of species to persist in the long-term because of splitting species ranges in smaller fragments (i.e., the Isolation effect). Benthic and fast-flowing water adapted species with hydrodynamic bodies are significantly associated with severe range contractions from climate change.


Asunto(s)
Cambio Climático , Ríos , Animales , Ecosistema , Peces , Agua Dulce
6.
Glob Chang Biol ; 26(11): 6383-6398, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32813898

RESUMEN

Understanding how global change and connectivity will jointly modify the distribution of riverine species is crucial for conservation biology and environmental management. However, little is known about the interaction between climate change and fragmentation and how movement barriers might impede native species from adjusting their distributions versus limit the further spread of alien species. In this study, we modelled the current and future distributions of 11 native and five alien fishes in the large and heavily fragmented Ebro River, located within the Mediterranean region, which has many freshwater endemics severely threatened by global change. We considered 10 climate change models and five modelling algorithms and assessed the effects of connectivity on the accessibility of future suitable habitats. Thereby, we identify most conflict-prone river reaches, that is, where barriers pose a particular trade-off between isolating and negatively impacting native species versus potentially reducing the risk of alien species spread. Our results projected upstream habitat shifts for the vast majority of the species. Climate change affected species differently, with alien species generally showing larger habitat gains compared to natives. Most pronounced distributional changes (i.e. losses of native species and gains of alien species) and compositional turnover might be expected in the lower and mid reaches of large tributaries of the Ebro River. The role of anthropogenic barriers in this context is often ambiguous but rather unfavourable, as they not only restrict native fishes but also alter stream habitats and flow conditions. However, with our spatial modelling framework, we could identify specific river reaches where the connectivity trade-off in the context of climate change is particularly relevant. Overall, our findings emphasize the importance of the complex effects that climate change, riverine connectivity and alien species are expected to impose on river communities and the urgent need to adapt management strategies accordingly.


Asunto(s)
Cambio Climático , Ríos , Animales , Ecosistema , Peces , Especies Introducidas
7.
Environ Manage ; 63(6): 759-776, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30937489

RESUMEN

Ecosystems and biodiversity produce benefits to society, but many of them are hard to quantify. For example, it is unclear whether European societies gain benefits from experiencing rivers that host high native biodiversity. Without such knowledge, monetary investments into ecologically oriented river management plans are difficult to justify. The objective of this study was to reveal how the public in four European countries values ecological characteristics of domestic rivers and the outcomes of hypothetical river basin management plans designed to improve river ecosystems, particularly fish biodiversity. We conducted a choice experiment among the populations in Norway, Sweden, Germany, and France. We found similar preference structures in all countries with high marginal willingness-to-pay for improvements of abiotic river attributes (increased accessiblity of the river banks, improved bathing water quality, decreased river fragmentation). Citizens also benefited from certain fish species occurring in a river with native salmonid species being more valued than nonnatives, particularly in Norway, and from the degree of a river's native biodiversity. Welfare measures calculated for selected river basin management plans (policy scenarios) revealed societal benefits that were primarily derived from ecological river management whereas a scenario focusing on hydroelectricity production generated the lowest utility. We conclude that ecological river management may produce high nonmarket economic benefits in all study countries, particularly through the management of abiotic river attributes and the restoration of declining or extinct fish species. Our results help to inform decisions on restoration efforts by showcasing the benefits that these measures have for the public.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Europa (Continente) , Francia , Alemania , Suecia
8.
Glob Chang Biol ; 25(2): 448-458, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30417977

RESUMEN

Climate change is expected to strongly affect freshwater fish communities. Combined with other anthropogenic drivers, the impacts may alter species spatio-temporal distributions and contribute to population declines and local extinctions. To provide timely management and conservation of fishes, it is relevant to identify species that will be most impacted by climate change and those that will be resilient. Species traits are considered a promising source of information on characteristics that influence resilience to various environmental conditions and impacts. To this end, we collated life-history traits and climatic niches of 443 European freshwater fish species and compared those identified as susceptible to climate change to those that are considered to be resilient. Significant differences were observed between the two groups in their distribution, life history, and climatic niche, with climate-change-susceptible species being distributed within the Mediterranean region, and being characterized by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller body and range size, and warmer thermal envelopes. Based on our results, we establish a list of species of highest priority for further research and monitoring regarding climate-change susceptibility within Europe. The presented approach represents a promising tool to efficiently assess large groups of species regarding their susceptibility to climate change and other threats, and to identify research and management priorities.


Asunto(s)
Cambio Climático , Ecosistema , Peces/fisiología , Rasgos de la Historia de Vida , Animales , Europa (Continente) , Agua Dulce
9.
Sci Total Environ ; 639: 1138-1147, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929282

RESUMEN

The natural flow regime is of central importance to the ecological integrity of rivers. Many rivers are heavily regulated and their flow regime has been severely affected by weirs and dams. However, information on hydrologic alteration is often not readily available or is only available for specific locations that may not coincide spatially with biological sampling sites, which restricts the analysis of the relationship between species and their riverine environment on large spatial scales. In this study on the Ebro River catchment, we applied boosted regression tree analyses to reveal significant environmental and spatial correlates of hydrologic alteration (i.e., differences between observed altered flow and modelled natural flow). Specifically, we used 37 variables related to climate, land use, topology and dams that can be easily derived in GIS systems to assess their association with three indices of hydrologic alteration describing changes in: (i) annual discharge, (ii) summer flow, and (iii) flow seasonality at 220 sites. Our results revealed highly variable spatial patterns of flow alteration in the Mediterranean catchment, which were mainly related to climate (dryness and seasonality), land use patterns, and upstream catchment size. The distance to the next upstream dam and reservoir surface area were the most relevant dam-related predictors of the investigated indices of hydrologic alteration, with the strongest effects of the distance to the next dam being on summer flows. The study also found potential limitations of using simulated, natural flow data from hydrologic models, which might be prone to uncertainties, to assess hydrologic alterations. We therefore (i) suggest that methods need to be improved to appropriately model natural flow regimes and quantify flow alteration, especially for data-limited and ungauged water bodies; and (ii) encourage future research on how global change interacts with river regulation, jointly affecting flow alteration.

10.
Sci Total Environ ; 627: 1093-1105, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426127

RESUMEN

European large rivers are exposed to multiple human pressures and maintained as waterways for inland navigation. However, little is known on the dominance and interactions of multiple pressures in large rivers and in particular inland navigation has been ignored in multi-pressure analyzes so far. We determined the response of ten fish population metrics (FPM, related to densities of diagnostic guilds and biodiversity) to 11 prevailing pressures including navigation intensity at 76 sites in eight European large rivers. Thereby, we aimed to derive indicative FPM for the most influential pressures that can serve for fish-based assessments. Pressures' influences, impacts and interactions were determined for each FPM using bootstrapped regression tree models. Increased flow velocity, navigation intensity and the loss of floodplains had the highest influences on guild densities and biodiversity. Interactions between navigation intensity and loss of floodplains and between navigation intensity and increased flow velocity were most frequent, each affecting 80% of the FPM. Further, increased sedimentation, channelization, organic siltation, the presence of artificial embankments and the presence of barriers had strong influences on at least one FPM. Thereby, each FPM was influenced by up to five pressures. However, some diagnostic FPM could be derived: Species richness, Shannon and Simpson Indices, the Fish Region Index and lithophilic and psammophilic guilds specifically indicate rhithralisation of the potamal region of large rivers. Lithophilic, phytophilic and psammophilic guilds indicate disturbance of shoreline habitats through both (i) wave action induced by passing vessels and (ii) hydromorphological degradation of the river channel that comes along with inland navigation. In European large rivers, inland navigation constitutes a highly influential pressure that adds on top of the prevailing hydromorphological degradation. Therefore, river management has to consider river hydromorphology and inland navigation to efficiently rehabilitate the potamal region of large rives.


Asunto(s)
Biodiversidad , Ecosistema , Monitoreo del Ambiente , Peces/clasificación , Ríos/química , Contaminación del Agua/análisis , Animales , Humanos , Contaminación del Agua/estadística & datos numéricos
11.
J Environ Manage ; 208: 169-179, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29268184

RESUMEN

Barriers represent one of the largest anthropogenic impacts on the ecological status of rivers, and they also potentially restrict fishes' ability to respond to future environmental changes. Thus, river management aims to restore the longitudinal connectivity of rivers to allow continuous migration and movement of water, sediments and biota. However, it is often unclear whether the targeted barriers are also those most relevant for fish species, particularly to track future habitat shifts caused by environmental change. In this study, we applied species distribution models and the GIS-based fish dispersal model FIDIMO to evaluate the impacts of barriers (e.g. weirs and dams) on the dispersal of 17 native fish species in the European River Elbe with a particular focus on climate- and land use-induced habitat shifts. Specifically, we compared three scenarios of longitudinal connectivity: (i) current longitudinal connectivity, (ii) connectivity improvements as planned by river managers for 2021 and (iii) a reference with full longitudinal connectivity. The models indicated that barriers restricted the movement of two modeled fish species on average, thus impeding fishes' abilities to track future habitat shifts. Moreover, the number of species affected by barriers increased downstream. For the River Elbe, our results suggest that river management has most likely identified the most relevant barriers in respect to the modeled species and future environmental change. We emphasize that river management and barrier prioritization must thoroughly consider species-specific movement and dispersal abilities, as well as the specific spatial arrangement of barriers in the river system in relation to the spatial distribution of species' populations and suitable habitats.


Asunto(s)
Ecosistema , Peces , Animales , Biota , Ríos , Especificidad de la Especie
12.
Glob Chang Biol ; 23(11): 4970-4986, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28500795

RESUMEN

The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use-driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species-specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up- vs. downstream) of predicted habitat shifts under coupled "moderate" and "severe" climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller-bodied fishes and to contract for larger-bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller-bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger-bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller-bodied species are rather restricted by their specific dispersal ability.


Asunto(s)
Distribución Animal , Cambio Climático , Ecosistema , Peces/fisiología , Animales , Europa (Continente) , Modelos Biológicos , Ríos , Especificidad de la Especie
13.
Glob Chang Biol ; 22(4): 1505-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26649996

RESUMEN

River ecosystems are threatened by future changes in land use and climatic conditions. However, little is known of the influence of interactions of these two dominant global drivers of change on ecosystems. Does the interaction amplify (synergistic interaction) or buffer (antagonistic interaction) the impacts and does their interaction effect differ in magnitude, direction and spatial extent compared to single independent pressures. In this study, we model the impact of single and interacting effects of land use and climate change on the spatial distribution of 33 fish species in the Elbe River. The varying effects were modeled using step-wise boosted regression trees based on 250 m raster grid cells. Species-specific models were built for both 'moderate' and 'extreme' future land use and climate change scenarios to assess synergistic, additive and antagonistic interaction effects on species losses, species gains and diversity indices and to quantify their spatial distribution within the Elbe River network. Our results revealed species richness is predicted to increase by 0.7-2.9 species by 2050 across the entire river network. Changes in species richness are likely to be spatially variable with significant changes predicted for 56-85% of the river network. Antagonistic interactions would dominate species losses and gains in up to 75% of the river network. In contrast, synergistic and additive effects would occur in only 20% and 16% of the river network, respectively. The magnitude of the interaction was negatively correlated with the magnitudes of the single independent effects of land use and climate change. Evidence is provided to show that future land use and climate change effects are highly interactive resulting in species range shifts that would be spatially variable in size and characteristic. These findings emphasize the importance of adaptive river management and the design of spatially connected conservation areas to compensate for these high species turnovers and range shifts.


Asunto(s)
Cambio Climático , Peces , Modelos Teóricos , Animales , Biodiversidad , Conservación de los Recursos Naturales , Europa (Continente) , Ríos
14.
PLoS One ; 10(11): e0142813, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26569119

RESUMEN

Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the importance of considering habitat at spatial scales larger than the sampling site, and (iii) that the importance of (river morphological) habitat characteristics differs depending on the spatial scale.


Asunto(s)
Ecosistema , Peces/fisiología , Modelos Teóricos , Ríos , Animales , Área Bajo la Curva , Geografía , Alemania , Modelos Lineales , Reproducibilidad de los Resultados , Especificidad de la Especie
15.
Ecol Appl ; 25(4): 914-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26465033

RESUMEN

Habitat suitability, dispersal potential, and fragmentation influence the distribution of stream fishes; however, their relative influence and interacting effects on species distributions are poorly understood, which may result in uncertain outcomes of river rehabilitation and conservation. Using empirical data describing 17 relatively common stream fishes, we combine (1) species habitat suitability models (MaxEnt) with a (2) species dispersal model (FIDIMO) and a (3) worst-case scenario of the influence of river fragmentation on dispersal. Using generalized linear mixed models, we aimed to uncover the role of these factors in explaining the probability of presence. Simulations over nine years allowed for assessing the relative importance of dispersal over time for structuring species occurrences vs. the importance of habitat suitability. Models combining all three structuring factors performed consistently better in predicting the spatial occurrence patterns than models including only single factors. Our results confirmed that distribution patterns of stream fishes are jointly controlled by species dispersal and habitat suitability. An increase of 0.1 habitat suitability probability more than doubled the odds of species occurrence; an increase of 0.1 dispersal probability yielded a 14-fold increase of the odds of species occurrence. Temporal simulations revealed that over short time frames (1-2 years) dispersal from nearby source populations is four times more important than habitat suitability for species presence. However, over longer time periods, the importance of habitat suitability increases relative to the importance of dispersal. Surprisingly, fragmentation by migration barriers did not appear as a significant driver of occurrence patterns. Concluding, these findings demonstrate the importance of the spatial arrangement of suitable habitats and potential source populations, as well as their relative position in relation to barriers. We emphasize considering the direction of connections within river networks and the dispersal abilities of fishes, as well as providing (access to) new, suitable habitat for successful river rehabilitation.


Asunto(s)
Distribución Animal , Ecosistema , Peces/fisiología , Ríos , Animales , Modelos Biológicos , Especificidad de la Especie
16.
Sci Total Environ ; 533: 542-56, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188405

RESUMEN

Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems.


Asunto(s)
Ecosistema , Peces/fisiología , Hidrología , Invertebrados/fisiología , Modelos Teóricos , Animales , Clima , Ríos , Movimientos del Agua , Calidad del Agua
17.
PLoS One ; 10(6): e0130228, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114430

RESUMEN

River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well as river restoration and management.


Asunto(s)
Biota/fisiología , Modelos Biológicos , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...